用户名: 密码: 验证码:
安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约
详细信息   下载全文 | 推荐本文 |
摘要
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是一种固体微区分析新技术。用该技术来分析矿床中硫化物的微量元素组成可以为研究成矿流体特征、矿床成因及找矿勘探提供有关的科学信息。文中以安徽铜陵矿集区内新桥Cu-Au-S矿床中的黄铁矿为研究对象,在详细的野外观察和室内鉴定的基础上,将矿床中的黄铁矿分为具有沉积特征的胶状黄铁矿(PyⅠ)、具有变形重结晶和热液叠加作用特征的细粒他形黄铁矿(PyⅡ)和具热液成因特征的中—粗粒自形黄铁矿(PyⅢ)3种类型。LA-ICP-MS原位微量元素测定结果显示,PyⅠ中相对富含Ti、Co、Ni、As、Se、Te;PyⅡ继承了PyⅠ中富含Ti、Co、Ni、As、Se、Te、Bi的特征,同时还含有不均匀分布的少量成矿元素(Cu、Pb、Zn、Au、Ag);PyⅢ中成矿元素Cu、Pb、Zn、Ag、Au以及Bi元素的含量较高,Co、Ni、As的含量较低。在元素赋存状态方面,Co、Ni、As、Se和Te均以类质同象的形式进入到了黄铁矿的晶格中;Bi在PyⅡ中主要以含Bi矿物的微细包裹体形式存在,而在PyⅢ中的Bi还部分取代了Fe而占据了晶格;Cu、Pb、Zn、Au、Ag这些成矿元素中,Cu和Zn分别以黄铜矿和闪锌矿的矿物包裹体存在于黄铁矿中;PyⅡ中所含的少量Au、Ag,可能分别以自然金和自然银的形式存在,而在PyⅢ中Au可能主要以银金矿的形式存在,Ag除了以银金矿的形式存在以外还可能赋存于黄铁矿中含铋的矿物包裹体内;Pb主要赋存于黄铁矿中的方铅矿或含铋矿物的包裹体中。在综合分析黄铁矿的结构形态和微量元素组成特征的基础上认为,PyⅠ型黄铁矿可能形成于前人提出的晚古生代海底沉积或喷流沉积环境,PyⅡ和PyⅢ型黄铁矿分别形成于中生代区域构造变形-热液叠加改造的过渡环境和热液环境,PyⅡ和PyⅢ的形成时间相近。新桥矿床的形成可能经历了晚古生代海底沉积或喷流沉积期和燕山期热液期,胶黄铁矿主要形成于沉积成矿期,而矿床中成矿物质Cu、Pb、Zn、Au、Ag等主要来自燕山期岩浆侵入作用形成的热液成矿系统。
        As a newly-developed micro-analytic technique,Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of sulfide minerals can provide us important informations regarding the nature of ore-forming fluids,ore genesis and their implications on mineral exploration.Pyrites from Xinqiao Cu-Au-S deposit in the Tongling mineralization belt,Anhui Province,China,have been selected for detailed study in this paper. Three types of pyrite were recognized through detailed field work and paragenetic studies,among which the earliest colloform pyrite,termed PyⅠ,is interpreted as sedimentary in origin,whereas PyⅡis mainly composed of fine grained,anhedral crystals with some characteristics of deformation and recrystallization.Medium -coarse grained and euhedral PyⅢis inferred to be the result of hydrothermal activities and associated with mineralization.The LA-ICP-MS analyses of three types of pyrite indicate that the sedimentary PyⅠcontains the highest values of Ti,Co,Ni,As,Se,Te.PyⅡpyrite also is rich in Ti,Co,Ni,As,Se,Te,with variable content of ore-forming elements such as Cu,Pb,Zn,Au and Ag.PyⅢshows distinguished composition compared to other two types of pyrite.Cu,Pb,Zn,Au,Ag and Bi give much higher ranges in PyⅢbut Co,Ni and As are relatively lower.Evidences show that Co,Ni,As,Se and Te are contained in pyrite as isomorphous solid solution.Bi occurs as Bi-containing minerals which are commonly small inclusions in PyⅡpyrite, however,in PyⅢ,Bi partially replaced Fe in lattice.The ore-forming elements,e.g.Cu,Pb,Zn,Au and Ag in Xinqiao deposit mainly occurred in PyⅢ.Cu and Zn are mainly represented by chalcopyrite and sphalerite inclusions enclosed in pyrite.Au and Ag in PyⅡ,albeit with low content,probably occur as inclusions of free-gold and free-silver.However,in PyⅢ,electrum is the major mineral containing Au and Ag,which is also possibly in bismuth minerals.Pb occurs in both galena and bismuth minerals inclusions in pyrite.Textures, paragenesis and trace element geochemistry of pyrite indicate that PyⅠwas formed in the process of the Late Paleozoic submarine-exhalative sedimentation,which was supported by other studies,whereas PyⅡand PyⅢpyrite may occur during the Mesozoic tectonic transition-deformation and subsequent hydrothermal superimposition, respectively.Therefore,the formation of Xinqiao Cu-Au-S deposit may have recorded both the late Paleozoic submarine or exhalation sedimentation and hydrothermal telescoping in the Mesozoic.Colloform pyrite with rare Cu and Au mineralization deposited during sedimentation,while most of economic metals,e.g.,Cu, Pb,Zn,Au and Ag,were introduced through hydrothermal fluids during emplacement of the Yanshanian dioritic intrusions.
引文
[1]Ridley W I,Lichte F E.Major,trace and ultratrace element analysis by laser ablation ICP-MS[J].Reviews in Economic Geology,1998,7:199-215.
    [2]Mnch U,Blum N,Halbach P.Mineralogical and geochemical features of sulfide chimneys from the MESO zone,Central Indian Ridge[J].Chemical Geology,1999,155(1/2):29-44.
    [3]Butler I B,Nesbitt R W.Trace element distributions in the chalcopyrite wall of a black smoker chimney:Insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J].Earth and Planetary Science Letters, 1999,167(3/4):335-345.
    [4]Clark C,Grguric B,Schmidt M A.Genetic implications of pyrite chemistry from the Palaeoproterozoic Olary Domain and overlying Neoproterozoic Adelaidean sequences,northeastern South Australia[J].Ore Geology Reviews,2004,25 (3/4):237-257.
    [5]Yang X M,Lentz D R,Sylvester P J.Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada[J].Mineralium Deposita,2006,41(4):369- 386.
    [6]Miguel G,Charles K,Lawrence D M,et al.REE in skarn systems:A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J].Geochimica et Cosmochimica Acta, 2008,72:185-205.
    [7]Weiss Y,Griffin W L,Elhlou S,et al.Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds [J].Chemical Geology,2008,252(3/4):158-168.
    [8]Belinda F,Rune B L,Andreas G,et al.In situ ananlysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J].Chemical Geology, 2002,182:237-247.
    [9]Lai S C,Yi H S,Liu C Y,et al.LA-ICP-MS and EMP analysis of olivines in Cenozoic trachybasalt from north Qiangtang, Qinghai-Tibet Plateau[J].Acta Mineralogica Sinica, 2002,22(2):107-112(in Chinese).
    [10]Lai S C,Liu C Y,Yi H S,et al.Features for the feldspars from Cenozoic trachyandesite in north Qiangtang,Tibetan plateau[J].Chinese Journal of Geology,2003,38(4):539- 545(in Chinese).
    [11]Gunther D,Audetat A,Frischknecht R,et al.Quantitative analysis of major,minor and trace elements in fluid inclusions using laser-ablation inductively-coupled-plasma mass-spectrometry [J].Journal of Analytical Atomic Spectrometry, 1998,13(4):263-270.
    [12]Ulrich T,Gunther D,Heinrich C A.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits [J].Nature,1999,399:676-679.
    [13]Heinrich C A,Pettke T,Halter W E,et al.Quantitative multi-element analysis of minerals,fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry [J].Geochimica et Cosmochimica Acta,2003,67(18): 3473-3497.
    [14]Bertelli M,Baker T,Cleverley J S,et al.Geochemical modelling of a Zn-Pb skarn:Constrains from LA-ICP-MS analysis of fluid inclusions[J].Journal of Geochemical Exploration. 2009,102(1):13-26.
    [15]Christensen J N,Halliday A N,Lee D C,et al.In suit Sr isotopic analysis by laser ablation[J].Earth and Planetary Science Letters,1995,136(1/2):79-85.
    [16]Davidson J,Tepley III F,Palacz Z,et al.Magma recharge, contamination and residence times revealed by in suit laser ablation isotopic analysis of feldspar in volcanic rocks[J].Earth and Planetary Science Letters,2001,184(2):427-442.
    [17]Bizzarro M,Simonetti A,Stevenson R K,et al.In situ ~(87)Sr/~(86)Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS[J].Geochimica et Cosmochimica Acta,2003,67(2):289-302.
    [18]Ramos F C,Wolff J A,Tollstrup D L.Measuring ~(87)Sr/~(86)Sr variations in minerals and groundmass from basalts using LAMC -ICPMS[J].Chemical Geology,2004,211:135-158.
    [19]Woodhead J,Hergt J,Shelley M,et al.Zircon Hf-isotope analysis with an excimer laser,depth profiling,ablation of complex geometries,and concomitant age estimation[J]. Chemical Geology,2004,209:121-135.
    [20]Jackson M,Hart S.Strontium isotopes in melt inclusions from Samoan basalts:Implications for heterogeneity in the Samoan plume[J].Earth and Planetary Science Letters, 2006,245:260-277.
    [21]Paton C,Hergt J M,Phillips D,et al.New insights into the genesis of Indian kimberlites from the Dharwar Cratin via in suit Sr isotope analysis of groundmass perovskite[J].Geology, 2007,35(11):1011-1014.
    [22]Paton C,Woodhead J,Hergt J,et al.Sr-isotope analysis of kimberlitic groundmass perovskite via LA-MC-ICPMS[J]. Geostandards and Geoanalytical Research,2007,5:1-10.
    [23]Watling R J,Herbert H K,Abell I D.The application of ablation -inductively coupled plasma-mass spectrometry(LAICP -MS) to the analysis of selected sulphide minerals[J]. Chemical Geology,1995,124:67-81.
    [24]Oliver L R.Pyrite composition and ore genesis in the Prince Lyell copper deposit,Mt Lyell mineral field,western Tasmania, Australia[J].Ore Geology Reviews,1996,10:231- 250.
    [25]Carew M J,Mark G,Oliver N H S,et al.Trace element geochemistry of magnetite and pyrite in Fe oxide(±Cu-Au) mineralised systems:Insights into the geochemistry of oreforming fluids(abstract)[J].Geochimica et Cosmochimica Acta,2006,70(18):83.
    [26]McGoldrick P J,Maier R C.Pyrite trace element halos to northern Australian sediment-hosted Zn-Pb-Ag deposits(abstract) [J].Geochimica et Cosmochimica Acta,2006,70 (18):411.
    [27]Benavides J.Iron Oxide-Copper-Gold Deposits of the Mantoverde Area,Northern Chile:Ore Genesis and Exploration Guidelines[D].Kingston,Ontario:Queen's University, 2006:134-152.
    [28]Large R R,Maslennikow V V,Robert F,et al.Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit,Lena gold province,Russia[J]. Economic Geology,2007,102:1233-1267.
    [29]Tang Y C,Wu Y C,Chu G Z,et al.Geology of Copper-Gold Polymetallic Ore Deposits in the Along the Yangtze River, Anhui Province[M].Beijing:Geological Publishing House, 1998(in Chinese).
    [30]Wang Y B,Liu D Y,Meng Y F,et al.SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district,Anhui[J].Geology in China,2004,31(2):169- 173(in Chinese).
    [31]Xie J C,Yang X Y,Du J G,et al.Re-Os precise dating of pyrite from the Xinqiao Cu-Au-Fe-S Deposit in Tongling,Anhui and its implication for mineralization[J].Chinese Journal of Geology,2009,44(1)..183-192(in Chinese).
    [32]Danyushevsky L V,Robinson P,McGoldrick P,et al.LAIC -PMS of sulphides:Evaluation of an XRF glass disc standard for analysis of different sulphide matrixes(abstract)[J]. Geochimica et Cosmochimica Acta,2003,67:23.
    [33]Klemm D D.Untersuchungen fiber die Mischkristall bildung im Dreieck diagramm FeS_2-CoS_2-NiS und ihre Beziehungen zum Aufbau der naturlichen“Bravoite”[J].Neues Jahrb Mineral Monatsh,1962,62:76-91(German with English abstract).
    [34]Walshe J L.The Geochemistry of the Mt Lyell Copper Deposits [D].Hobart:University of Tasmania,1977.
    [35]Springer G,Schachner-Korn D,Long J V P.Metastable solid solution relations in the system FeS_2-CoS_2-NiS_2[J].Economic Geology,1964,59:475-491.
    [36]Fleischer M.Minor elements in some sulphide minerals[M] //Bateman A M.Economic Geology,Fiftieth Anniversary Volume.Urbana:Economic Geology Publishing Co,1955: 970-1024.
    [37]Hawley J E,Nichol L Trace elements in pyrite,pyrrhotite and chalcopyrite of different ores[J].Economic Geology, 1961,56:467-487.
    [38]Riley J F.The cobaltiferous pyrite series[J].American Mineralogist, 1968,53(1/2):293-295.
    [39]Ren Y S,Liu L D,Wan X Z,et al.A study on the relationship between bismuth minerals and gold mineralization in skarn gold deposits in Shizishan orefield[J].Journal of Mineralogy and Petrology,2004,24(2):41-45(in Chinese).
    [40]Alderton D H M,Pearce J A,Potts P J.Rare earth element mobility during granite alteration:Evidence from Southwest England[J].Earth and Planetary Science Letters,1980,49 (1):149-165.
    [41]Bi X W,Hu R Z,Peng J T,et al.REE and HFSE geochemical characteristics of pyrite in Yao'an gold deposit:Tracing ore forming fluid signatures[J].Bulletin of Mineralogy,Petrology and Geochemistry,2004,23(1):1-4(in Chinese).
    [42]Brown A C,Bartholme P.Inhomogeneities in cobaltiferous pyrite from the Chibuluma Cu-Co deposit,Zambia[J].Mineralium Deposita,1972,7(1):100-105.
    [43]Xu G F.Typomorphic characteristics of pyrite and its significance [J].Geological Review,1980,26(6):541-546(in Chinese).
    [44]Loftus H G.Cobalt nicked and selenium in sulfide an indications of genesis[J].Mineralium Deposita,1967,2:228-240.
    [45]Chen G Y,Sun D S,Yin H A,et al.Genetic Mineralogy and Prospecting Mineralogy[M].Chongqing:Chongqing Press, 1987:240-242(in Chinese).
    [46]Chang Y F,Liu X P,Wu Y C.The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River[M].Beijing: Geological Publishing House,1991:1-379(in Chinese).
    [47]Zang W S,Wu G G,Zhang D,et al.A preliminary discussion on genesis of Xinqiao S-Fe orefield[J].Mineral Deposits, 2007,26(4):464-474(in Chinese).
    [48]Xu K Q,Zhu J C.Origin of the sedimentary-(or volcano sedimentary-) iron-copper deposits in some fault depression belts in Southeast China[J].Geology of Fujian,1978(4):1- 68(in Chinese).
    [49]Gu L X,Xu K Q,On the Carboniferous submarine massive sulphide deposits in the lower reaches of the Changjiang(Yangzi) River[J].Acta Geologica Sinica,1986,60(2):176-188 (in Chinese).
    [50]Xu G,Zhou J.The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district,China:Synorogenic remobilization of a stratiform sulfide deposit[J].Ore Geology Reviews,2001, 18(1/2):77-94.
    [51]Xu W Y,Yang Z S,Meng Y F,et al.Genetic model and dynamic migration of ore-forming fluids in Carboniferous exhalation -sedimentary massive sulfide deposits of Tongling district, Anhui Province[J].Mineral Deposits,2004,23(3): 353-364(in Chinese).
    [52]Yang Z S,Hou Z Q,Meng Y F,et al.Spatial-temporal structures of Hercynian exhalitive-sedimentary fluid system in Tongling ore concentration area,Anhui Province[J].Mineral Deposits,2004,23(3):282-297(in Chinese).
    [53]Wang Y B,Tang S H,Wang J H,et al.Rb-Sr dating the pyrite of the Xinqiao Cu-S-Fe-Au deposit.Tongling,Anhui Province[J].Geological Review,2004,50(5):538-542(in Chinese).
    [54]Zeng P S,Meng Y F,Yang Z S,et al.Hydrothermal sedimentary rocks of Sedex-type massive sulfide deposits in Tongling ore cluster area,Anhui Province[J].Mineral Deposits, 2004,23(3):334-343(in Chinese).
    [55]Jiang S Y,Li L,Zhu B,et al.Geochemical and Sr-Nd-Hf isotopic compositions of granodiorite from the Wushan copper deposit,Jiangxi Province and their implications for petrogenesis [J].Acta Petrologica Sinica,2008,24(8):1679-1690(in Chinese).
    [56]Lu J J,Guo W M,Chen W F,et al.A metallogenic model for the Dongguashan Cu-Au deposit of Tongling,Anhui Province[J].Acta Petrologica Sinica,2008,24(8):1857- 1864(in Chinese).
    [57]803 Geological Team of East China Metallurgical and Geological Exploration.Internal Exploration Report for the Xinqiao Deposit[R].1971(in Chinese).
    [58]Mao J W,Shao Y J,Xie G Q,et al.Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of middle-lower Yangtz valley metallogenic belt[J].Mineral Deposits,2009,28(2):109-119(in Chinese).
    [59]Yang B,Wang Z T.The discovery of a new type of orebody and the metallogenic model of the Tongguanshan copper deposit with a discussion on its relationship to the complicated regional copper metallogenic model[J].Mineral Deposits, 1985,4(4):1-13(in Chinese).
    [9]赖绍聪,伊海生,刘池阳,等.青藏高原北羌塘半岛湖新生代粗面玄武岩橄榄石电子探针和激光探针分析[J].矿物学报,2002,22(2):107-112.
    [10]赖绍聪,刘池阳,伊海生,等.北羌塘新生代火山岩长石矿物激光探针原位测试及其微量元素特征初探[J].地质科学, 2003,38(4):539-545.
    [29]唐永成,吴言昌,储国正,等.安徽沿江地区铜多金属矿床地质[M].北京:地质出版社,1998.
    [30]王彦斌,刘敦一,蒙义峰,等.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义[J].中国地质,2004.31(2):169-173.
    [31]谢建成,杨晓勇,杜建国,等.安徽铜陵新桥Cu-Au-Fe-S矿床黄铁矿Re-Os定年及成矿意义[J].地质科学,2009,44 (1):183-192.
    [39]任云生,刘连登,万相宗,等.狮子山矿田夕卡岩型金矿铋矿物与金矿化关系研究[J].矿物岩石,2004,24(2):41-45.
    [41]毕献武,胡瑞忠,彭建堂,等.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J].矿物岩石地球化学通报, 2004,23(1):1-4.
    [43]徐国风.黄铁矿的标型特征及其实际意义[J].地质评论, 1980,26(6):541-546.
    [45]陈光远,孙岱生,殷辉安,等.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987:240-242.
    [46]常印佛,刘湘培,吴言昌.长江中下游地区铜铁成矿带[M].北京:地质出版社,1991:1-379.
    [47]藏文拴,吴淦国,张达,等.浅析安徽省新桥S-Fe矿田的成因[J].矿床地质,2007,26(4):464-474.
    [48]徐克勤,朱金初.我国东南部几个断裂坳陷带中沉积(或火山沉积)热液叠加类铜铁矿床成因的探讨[J].福建地质, 1978(4):1-68.
    [49]顾连兴,徐克勤.论长江中、下游中石炭世海底块状硫化物矿床[J].地质学报,1986,60(2):176-188.
    [51]徐文艺,杨竹森,蒙义峰,等.安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移[J].矿床地质,2004, 23(3):353-364.
    [52]杨竹森,侯增谦,蒙义峰,等.安徽铜陵矿集区海西期喷流沉积流体系统时空结构[J].矿床地质,2004,23(3):282- 297.
    [53]王彦斌,唐索寒,王进辉,等.安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据[J].地质论评,2004,50(5):538- 542.
    [54]曾普胜,蒙义峰,杨竹森,等.安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩[J].矿床地质,2004,23(3):334- 343.
    [55]蒋少涌,李亮,朱碧,等.江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨[J].岩石学报,2008,24(8):1679-1690.
    [56]陆建军,郭维民,陈卫锋,等.安徽铜陵冬瓜山铜(金)矿床成矿模式[J].岩石学报,2008,24(8):1857-1864.
    [57]冶金803地质队.安徽省铜陵县新桥铜硫铁矿储量报告[R]. 1971.
    [58]毛景文,邵拥军,谢桂青,等.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,2009,28(2):109-119.
    [59]杨兵,王之田.铜官山铜矿床新类型矿体的发现及矿床成因模式[J].矿床地质,1985,4(4):1-13.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700