用户名: 密码: 验证码:
三峡库区万州段消落带土壤重金属形态风险评价
详细信息   下载全文 | 推荐本文 |
摘要
为了分析三峡库区消落带土壤重金属不同的化学形态危害,采集万州段8个断面的样品,通过化学连续提取法得到5种重金属Cd、Cr、Cu、Pb和Zn的5种化学形态,采用多维主成分分析方法的T ucker 3模型进行评价,结果表明:在支流上游生态环境压力较大的背景下,支流和长江干流汇合区的消落带土壤重金属污染相对严重,仅Cr不超标,Cd超标最大;重金属的5种化学形态中,残渣态所占的比例最高。仅有Cd和Pb的铁锰氧化物结合态含量较高,具有较大的潜在生态风险,同时,Cd的可交换态和碳酸盐结合态含量最大,污染风险最大,是三峡库区消落带土壤中首要的污染元素。Tucker3模型可以展示采样断面、重金属种类、化学形态三个维度之间的相关性强弱,具有较好的应用前景。
        To analyze the chemical hazards of different heavy metal chemical forms in soil in the hydro-fluctuation belt of Three Gorges Reservoir,samples from 8 cross-sections in Wanzhou section were collected,from which 5 fractions of 5 heavy metals,namely Cd,Cr,Cu,Pb and Zn,were obtained using chemical sequential extraction and assessed by Tucker3 Model of multidimensional principal component analysis method.The results showed that in the context of heavy ecological environment pressure in the upstream of tributaries,soil heavy metal pollution was relatively serious in hydrofluctuation belt where tributaries and main stream of Yangtze River converge, where only the concentration of Cr was not overproof and the overproof of Cd was highest.Among the chemical fractions of soil heavy metals,residual fraction occupied the highest proportion.Only the content of FeMn oxides fraction of Cd and Pb was relatively high, having greater potential ecological risk. Meanwhile,the content and pollution risk of exchangeable fraction and carbonate bound fraction of Cd were highest,which was the primary polluting element in the soil of hydro-fluctuation belt of Three Gorges Reservoir area.Tucker3 Model can reveal the relevance of the three dimensions,sampling cross-sections, species of heavy metals and chemical fraction, which has favorable application prospects.
引文
[1]熊俊,袁喜,梅朋森等.三峡库区消落带环境治理和生态恢复的研究现状与进展[J].三峡大学学报(自然科学版),2011,33(2):23—28.
    [2]赵丽霞,张勇,雷亚春.汾河底泥中重金属元素污染状况研究[J].光谱实验室,2005,22(1):106—108.
    [3]Andersson C A,Munck L,Henrion Ret al.Analysis ofN-dimensional Data Arrays from Fluorescence Spectroscopy of an Intermediary Sugar Product[J].Fresenius Journal of Analytical Chemistry.,1997,359(2):138—142.
    [4]Ding H J,Ji H B.Application of Chemometric Methods to Analyze the Distribution and Chemical Fraction Patterns of Metals in Sediment from a Metropolitan river[J].Environmental Earth Science,2010,61(3):641—657.
    [5]高彦鑫,冯金国,唐磊等.密云水库上游金属矿区土壤中重金属形态分布及风险评价[J].环境科学,2012,33(5):1707—1717.
    [6]智颖飙,王再岚,马中等.鄂尔多斯地区公路沿线土壤重金属形态与生物有效性[J].生态学报,2007,27(5):2030—2039.
    [7]刘波,张凌云,丁文捷.微波消解、ICP-AES快速测定污泥中的铜、铅、锌、镉、铬、镍、锰和磷[J].光谱实验室,2004,21(4):826—829.
    [8]Andersson C A,Bro R.TheN-Way Toolbox for MATLAB[J].Chemometrics and Intelligent Laboratory Systems,2000,52(1):1—4.
    [9]唐将,钟远平,王力.三峡库区土壤重金属背景值研究[J].中国生态农业学报,2008,16(4):848—852.
    [10]朱圣清,臧小平.长江主要城市江段重金属污染状况及特征[J].人民长江,2001,32(7):23—25.
    [11]王图锦.三峡库区消落带重金属迁移转化特征研究[D].重庆:重庆大学.2011.
    [12]付川,郭劲松,方芳.三峡库区消落区土壤沉积物中重金属的形态及其环境影响分析[J].环境与健康杂志,2010,27(4):354—356.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700