用户名: 密码: 验证码:
Integration of InGaP/GaAs/Ge triple-junction solar cells on deeply patterned silicon substrates
详细信息    查看全文
文摘
We report preliminary results on InGaP/InGaAs/Ge photovoltaic cells for concentrated terrestrial applications, monolithically integrated on engineered Si(001) substrates. Cells deposited on planar Ge/Si(001) epilayers, grown by plasma-enhanced chemical vapor deposition, provide good efficiency and spectral response, despite the small thickness of the Ge epilayers and a threading dislocation density as large as 107/cm2. The presence of microcracks generated by the thermal misfit is compensated by a dense collection grid that avoids insulated areas. In order to avoid the excessive shadowing introduced by the use of a dense grid, the crack density needs to be lowered. Here, we show that deep patterning of the Si substrate in blocks can be an option, provided that a continuous Ge layer is formed at the top, and it is suitably planarized before the metalorganic chemical vapor deposition. The crack density is effectively decreased, despite that the efficiency is also lowered with respect to unpatterned devices. The reasons of this efficiency reduction are discussed, and a strategy for improvement is proposed and explored. Full morphological analysis of the coalesced Ge blocks is reported, and the final devices are tested under concentrated AM1.5D spectrum. Copyright

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700