用户名: 密码: 验证码:
Krylov subspace exponential time domain solution of Maxwell鈥檚 equations in photonic crystal modeling
详细信息    查看全文
文摘
The exponential time integration, i.e., time integration which involves the matrix exponential, is an attractive tool for time domain modeling involving Maxwell’s equations. However, its application in practice often requires a substantial knowledge of numerical linear algebra algorithms, such as Krylov subspace methods.

In this note we discuss exponential Krylov subspace time integration methods and provide a simple guide on how to use these methods in practice. While specifically aiming at nanophotonics applications, we intentionally keep the presentation as general as possible and consider full vector Maxwell’s equations with damping (i.e., with nonzero conductivity terms).

60">Efficient techniques such as the Krylov shift-and-invert method and residual-based stopping criteria are discussed in detail. Numerical experiments are presented to demonstrate the efficiency of the discussed methods and their mesh independent convergence. Some of the algorithms described here are available as Octave/Matlab codes from www.math.utwente.nl/~botchevma/expm/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700