用户名: 密码: 验证码:
A fast-POD model for simulation and control of indoor thermal environment of buildings
详细信息    查看全文
文摘
Precise and efficient control strategies of heating, ventilation, and air conditioning (HVAC) systems need detailed and dynamic indoor environment information, which is hardly acquired satisfying realtime and precision requirements simultaneously. In this study, a fast simulation method based on existing proper orthogonal decomposition (POD) is proposed for dynamic modelling and control of indoor temperature distributions. To meet the realtime and precision requirements at the same time, an offline-online scheme is applied. In the offline stage, the finite volume method (FVM) is used for spatial and temporal discretizations of the indoor temperature distributions. The obtained ordinary differential equations (ODEs) are further order-reduced by POD (Karhunen-Lo¨¨ve)/Galerkin techniques. Snapshot method is used for the reduced-order basis construction. In the online stage, the model predictive control (MPC) strategy is used for the purpose of reference trajectory tracking, within which the proposed POD model is embedded to realtime estimate spacial temperature variation. Both transient and steady performances of the reduced-order model are compared with those of CFD-based simulation. A boundary control test is finally given, which demonstrates the applicability of the technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700