用户名: 密码: 验证码:
PAA grafting onto new acrylate-alumoxane/PES mixed matrix nano-enhanced membrane: Preparation, characterization and performance in dye removal
详细信息    查看全文
文摘
Nanoboehmite particles were modified by acrylic acid to produce new alumoxane nanoparticles. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to realize shape, size and functional groups of synthesized acrylate-alumoxane nanoparticles. The analyses declared that spherical acrylate-alumoxane nanoparticles were formed with hydroxyl and acrylate groups on their surface. Boehmite and acrylate-alumoxane were successfully introduced into polyethersulfone (PES) membrane matrix by the phase inversion method. Fabricated membranes were examined for water permeability, dye (acid blue 193) retention capability and fouling resistance against whey proteins. The field emission scanning electron microscopy (FE-SEM) images were used to estimate the changes in skin-layer morphology and bulk porosity of the prepared membranes. As a result, the directly arrayed finger-like macro-voids as well as bulk porosity were gained by adding acrylate-alumoxane nanoparticles compared to pristine PES membrane. However, different quantities of acrylate-alumoxane in the casting solution induced no noticeable alteration in the membranes bulk porosity. The membranes containing 1 wt. % of acrylate-alumoxane and 1 wt. % of nanoboehmite were selected to be grafted by polyacrylic acid (PAA). Comparison of grafting efficiency for pristine PES membrane and nanofiller blended membranes proved that acrylate-alumoxane offered more effective grafted membrane by providing polymerization initiation sites on mixed matrix membrane surface. In addition to high water permeability (around 19 kg/m2 h bar), the acrylate-alumoxane mixed/PAA grafted membrane showed superior dye removal and fouling resistance. Atomic force microscopy (AFM) as well as water contact angle test was applied for investigation of membranes surface properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700