Structural geometry and deformation mechanism of the Longquan anticline in the Longmen Shan fold-and-thrust belt, eastern Tibet
详细信息    查看全文
文摘
The 2008 Mw 7.9 Wenchuan earthquake is a consequence of ongoing India-Tibet collision and reflects the growth of the Longmen Shan fold-and-thrust belt. In this paper, we present new constraints on the deformation mechanism of the Longmen Shan fold-and-thrust belt, by comparing the physical models to the example of the Longmen Shan fold-and-thrust belt. The result indicates that the deformation mechanism of the belt is mainly dominated by the pre-Sinian layer, whereas locally is controlled by the Lower Triassic layer, such as the Longquan anticline. In addition, we discuss the deformation style of the Longquan anticline various along strike, based on the seismic reflection data, interpretations of structural cross-sections and field observations, as well as physical modeling. The sandbox modeling suggests that the deformation of the central segment of Longquan anticline is likely controlled by higher displacement rate, higher erosion and lower sedimentation, which is in contrast with the southern and northern segment. Moreover, the structural geometry of the central segment of Longquan anticline is more complex than the end-member models of fault-related folds, which is mainly controlled by pure-shear wedge fault-bend fold and bounded by west-verging thrust fault.

Combining the studies of the structural geometry, deformation mechanism, and previous studies, we infer that the Longquan anticline is active and potentially seismogenic. Therefore, a quantitative re-evaluation of seismic hazard in Longquan anticline and adjacent area directly beneath the densely populated Sichuan basin is urgently needed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700