用户名: 密码: 验证码:
Tracing the position of the South China block in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons
详细信息    查看全文
文摘
U–Pb detrital zircon geochronology from Lower Devonian quartz arenites of the northwestern margin of the Yangtze block yields dominant early Neoproterozoic (0.85–1.0 Ga), Pan-African (0.5–0.65 Ga) and middle Neoproterozoic (0.68–0.8 Ga) age populations and minor Mesoproterozoic to middle Mesoarchean (1.0–3.0 Ga) ages. Middle Mesoarchean to Mesoproterozoic rocks, however, are widespread in the South China block. Although Hf isotopic compositions show both juvenile crustal growth and crustal reworking for all the age groupings, the crust growth, essentially mantle-derived, occurred mainly around 3.1 Ga, 1.9 Ga and 1.0 Ga, respectively. Zircon typology and youngest grain ages indicate that this suite of quartz arenites was the product of multiphase reworking. Abundant magmatic zircon detritus with concordant U–Pb Grenvillian and Pan-African ages, together with accompanying various εHf(t) values, indicate an exotic provenance for the quartz arenite external to the South China block. Qualitative comparisons of age spectra for the late Neoproterozoic sediments of the Cathaysian Block, early Paleozoic sediments of pre-rift Tethyan Himalaya sequence in North India and lower Paleozoic sandstone from the Perth Basin in West Australia, show that they all have two the largest age clusters representing Grenvillian and Pan-African orogenic episodes. The resemblance of these age spectra and zircon typology suggests that the most likely source for the Lower Devonian quartz arenites of the South China block was the East African Orogen and Kuunga Orogen for their early Grenvillian and Pan-African populations, whereas the Hannan–Panxi arc, Jiangnan orogen, and the Yangtze block basements might have contributed to the detrital zircon grains of the Neoproterozoic and Pre-Grenvillian ages. Hf isotopic data indicate that the crustal evolution of the drainage area matches well with the episodic crust generation of Gondwana. These results imply that the previously suggested position of the SCB in Gondwana should be re-evaluated, and the South China block should be linked with North India and West Australia as a part of East Gondwana during the assembly of Gondwana, rather than a discrete continent block in the paleo-Pacific.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700