用户名: 密码: 验证码:
Highly fractionated Late Triassic I-type granites and related molybdenum mineralization in the Qinling orogenic belt: Geochemical and U-Pb-Hf and Re-Os isotope constraints
详细信息    查看全文
文摘
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U-Pb dating indicates that the granite was emplaced at 210.1 卤 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 卤 7.1 Ma. Magmatic zircons from the granite have Hf(t) values of 鈭?#xA0;4.0 to + 1.5, whereas the inherited zircon core has a Hf(t) value of 鈭?#xA0;5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (未Eu = 0.33-0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.

Re-Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 卤 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic-Early Jurassic granitoids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700