用户名: 密码: 验证码:
Development of Escherichia coli Strains That Withstand Membrane Protein-Induced Toxicity and Achieve High-Level Recombinant Membrane Protein Production
详细信息    查看全文
文摘
Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700