用户名: 密码: 验证码:
Sol−Gel Pure and Mixed-Phase Titanium Dioxide for Photocatalytic Purposes: Relations between Phase Composition, Catalytic Activity, and Charge-Trapped Sites
详细信息    查看全文
文摘
The sol−gel synthesis of TiO2 from TiCl4 assisted by the triblock copolymer EO20−PO70−EO20 (EO = −CH2CH2O−, PO = −CH2(CH3)CHO−) as templating agent was carried out by systematically changing H2O:Ti (rw) and HCl:Ti (ra) molar ratios. Mesoporous and nanocrystalline TiO2 samples with well-defined and controlled phase composition (anatase, rutile, and mixed phase) were obtained after calcination at 400 °C and characterized for the morphology, particle size, and shape using TEM, HRTEM, XRD, and surface area measurements. The role of rw and ra and influence of the copolymer in determining the phase composition was demonstrated. Rutile becomes the main phase by increasing rw. In fact, the decrease of Ti concentration slows down the condensation rate, favoring formation of rutile seeds in the gel. The photocatalytic activity of TiO2 in the UV photomineralization of phenol depends on the phase composition and oxidizing agent, H2O2 or O2. When the oxidation is performed by H2O2, rutile, formed by large crystalline rods with high aspect ratios (size 15−20 × 100−120 nm), shows higher catalytic activity with respect to the small, almost cubic, anatase particles (5−15 nm). If O2 is used, the catalytic activity generally decreases and the behavior of polymorphous species is reverse. EPR investigation of the paramagnetic charge carriers, formed under UV irradiation at 10 K, showed the resonance lines of holes trapped at O lattice sites and electrons trapped at Ti3+ and O2 sites. The rutile crystalline rods present the largest quantity of O and Ti3+ centers. The overall results suggest correlation between TiO2 particle size and shape and the photocatalytic activity and indicate that electron−hole recombination is the most probable rate-controlling process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700