用户名: 密码: 验证码:
Dynamic Interconversions of HCV Helicase Binding Modes on the Nucleic Acid Substrate
详细信息    查看全文
文摘
The dynamics involved in the interaction between hepatitis C virus nonstructural protein 3 (NS3) C-terminal helicase and its nucleic acid substrate have been the subject of interest for some time given the key role of this enzyme in viral replication. Here, we employed fluorescence-based techniques and focused on events that precede the unwinding process. Both ensemble Förster resonance energy transfer (FRET) and ensemble protein induced fluorescence enhancement (PIFE) assays show binding on the 3′ single-stranded overhang of model DNA substrates (>5 nucleotides) with no preference for the single-stranded/double-stranded (ss/ds) junction. Single-molecule PIFE experiments revealed three enhancement levels that correspond to three discrete binding sites at adjacent bases. The enzyme is able to transition between binding sites in both directions without dissociating from the nucleic acid. In contrast, the NS3 mutant W501A, which is unable to engage in stacking interactions with the DNA, is severely compromised in this switching activity. Altogether our data are consistent with a model for NS3 dynamics that favors ATP-independent random binding and sliding by one and two nucleotides along the overhang of the loading strand.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700