用户名: 密码: 验证码:
Reactor Modeling and Recipe Optimization of Ring-Opening Polymerization: Block Copolymers
详细信息    查看全文
文摘
This paper addresses reactor modeling and recipe optimization of semibatch ring-opening polymerization processes for making block copolymers. Two rigorous reactor models are developed on the basis of the population balance and method of moments, respectively. The complete polymerization process model also includes vapor鈥搇iquid equilibrium equations from applying Flory鈥揌uggins theory. The accuracies of both reactor models are validated against historical plant data by adjusting model parameters such as kinetic rate constants. The recipe optimization problem is formulated to design the optimal reactor operating policy to minimize polymerization time and incorporate additional process constraints in accordance with final product properties and process safety requirements. The resulting dynamic optimization problem is translated to a nonlinear program by using the simultaneous collocation method, and further solved by the interior point method. In the case study example, both reactor models show satisfactory matches between their predictions and the historical plant data. The recipe optimization with both models demonstrates significant process improvement and reductions in batch operating time. Moreover, the moment model shows superiority over the population balance model in terms of computational efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700