用户名: 密码: 验证码:
Computational Search for Novel Hard Chromium-Based Materials
详细信息    查看全文
文摘
Nitrides, carbides, and borides of transition metals are an attractive class of hard materials. Our recent preliminary explorations of the binary chemical compounds indicated that chromium-based materials are among the hardest transition metal compounds. Motivated by this, here we explore in detail the binary Cr–B, Cr–C, and Cr–N systems using global optimization techniques. Calculated enthalpy of formation and hardness of predicted materials were used for Pareto optimization to define the hardest materials with the lowest energy. Our calculations recover all numerous known stable compounds (except Cr23C6 with its large unit cell) and discover a novel stable phase Pmn21-Cr2C. We resolve the structure of Cr2N and find it to be of anti-CaCl2 type (space group Pnnm). Many of these phases possess remarkable hardness, but only CrB4 is superhard (Vickers hardness 48 GPa). Among chromium compounds, borides generally possess the highest hardnesses and greatest stability. Under pressure, we predict stabilization of a layered TMDC-like phase of Cr2N, a WC-type phase of CrN, and a new compound CrN4. Nitrogen-rich chromium nitride CrN4 is a high-energy-density material featuring polymeric nitrogen chains. In the presence of metal atoms (e.g., Cr), polymerization of nitrogen takes place at much lower pressures; CrN4 becomes stable at ∼15 GPa (cf. 110 GPa for synthesis of pure polymeric nitrogen).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700