用户名: 密码: 验证码:
Physiological and Transcriptional Studies of Cr(VI) Reduction under Aerobic and Denitrifying Conditions by an Aquifer-Derived Pseudomonad
详细信息    查看全文
文摘
Cr(VI) is a widespread groundwater contaminant that is a potent toxin, mutagen, and carcinogen. In situ reductive immobilization is a favored approach for Cr(VI) bioremediation, and Cr(VI) reduction has been reported in a variety of aerobic, facultative, and anaerobic bacteria, including a number of pseudomonads. However, studies comparing Cr(VI) reduction under aerobic and denitrifying conditions in the same organism are not available. We have conducted studies with strain RCH2, a bacterium similar to Pseudomonas stutzeri that we isolated from a Cr-contaminated aquifer. Cell suspension studies with lactate demonstrated that Cr(VI) reduction could occur under either denitrifying or aerobic conditions (at comparable specific rates) and that reduction was at least 20-fold more rapid when the terminal electron acceptor (i.e., nitrate or O2) was present. Our results suggest that Cr(VI) reduction by strain RCH2 under either aerobic or denitrifying conditions is primarily cometabolic in the sense that the physiological electron acceptor (oxygen or nitrate) appears to be required. Under both aerobic and denitrifying conditions, the gene(s) associated with chromate reduction are not inducible by Cr. Continuous culture (chemostat) studies showed strong correlations (r2 values >0.93) between nitrate reduction rate and the transcript copy number of either nirS (cytochrome cd1 nitrite reductase) or narG (nitrate reductase α subunit). As our studies indicate that anaerobic Cr(VI) reduction by this pseudomonad requires active denitrification and that denitrification and chromate reduction rates are highly correlated (r2 > 0.99), monitoring expression of such denitrification genes in biostimulated aquifers could provide valuable proxy information for in situ chromate reduction by similar bacteria even if the specific genes involved in chromate reduction have not been identified. We also report incomplete removal of reduced Cr from solution and on artifacts in the widely used diphenylcarbazide assay for Cr(VI), most notably, its complete inactivation in the presence of millimolar nitrite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700