用户名: 密码: 验证码:
Polylactide-graft-doxorubicin Nanoparticles with Precisely Controlled Drug Loading for pH-Triggered Drug Delivery
详细信息    查看全文
文摘
Nanoparticles (NPs) with high drug loading and pH-responsivity were prepared by nanoprecipitation of a hydrophobic polymer-drug conjugate (PDC). The PDC, polylactide-graft-doxorubicin (PLA-g-DOX), was synthesized by azide鈥揳lkyne click reaction to transform acetylene-functionalized PLA into PLA-graft-aldehyde (PLA-g-ALD), followed by DOX conjugation to form acid-sensitive Schiff base linkage between drug moieties and polymer scaffold. The DOX loading amount in PLA-g-DOX PDC was determined to be 32 wt % by <sup>1sup>H NMR and UV鈥搗is spectroscopies. PLA-g-DOX PDC was further used to prepare NPs with precisely controlled drug loading by nanoprecipitation in the presence of a PEGylated surfactant. The effects of organic solvent, PLA-g-DOX PDC concentration and PLA-g-DOX/surfactant mass ratio on size and size distribution of NPs were systematically examined based on analysis by dynamic light scattering (DLS) and transmission electron microscopy (TEM). NPs prepared under the optimal conditions exhibited well-defined spherical morphology with volume-average hydrodynamic diameter (D<sub>hsub>) around 100 nm. Due to the Schiff base conjugation linkage in PLA-g-DOX PDC, acid-sensitive drug release behavior of the NPs was observed. In vitro studies against MCF-7 breast cancer cells showed that the NPs can be readily taken up and result in enhanced therapeutic efficiency as compared to DOX路HCl, indicating their promising potential applications as anticancer nanomedicines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700