用户名: 密码: 验证码:
A Combined Monte Carlo and Hückel Theory Simulation of Orientational Ordering in C60 Assemblies
详细信息    查看全文
文摘
Orientational ordering of C60 molecules within monolayer and multilayer islands is a regularly observed phenomenon in scanning tunneling microscopy (STM) studies. Here we simulate the orientational ordering seen in STM images via a novel combination of Monte Carlo and Hückel theory methods and compare to experimental data. A measure of the repulsive interaction energy between two adjacent C60 molecules is precalculated by estimating and processing the electron density distribution between them. Many combinations of molecular orientations are considered to encompass all the details of the molecular orbitals. Precalculated intermolecular interaction energies are inputted into a simulated C60 island. Here, the center position of each molecule is fixed, but the molecules are allowed to rotate freely around their centers. A minimum in the total island free energy is sought by sequentially picking molecules at random and rotating them according to their neighbors. Results show significant correlation with experimentally observed features in both mono- and multilayered islands on a variety of different substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700