用户名: 密码: 验证码:
Deconstructing Hydrogen-Bond Networks in Confined Nanoporous Materials: Implications for Alcohol鈥揥ater Separation
详细信息    查看全文
文摘
Essential topological indices of the hydrogen-bond networks of water, methanol, ethanol, and their binary mixtures adsorbed in microporous silicalite-1 (a hydrophobic zeolite with potential application for biofuel processing) are analyzed and compared to their bulk liquid counterparts. These include the geodesic distribution (the shortest H-bond pathways between molecular vertices), the average length, the geodesic index, the orientation and distance of the adsorbate to the interior of the zeolite, and the sorbate鈥搒orbate and sorbate鈥搒orbent distributions of H-bonds. In combination, they describe how the H-bond networks are altered when going from the bulk to the confined silicalite-1 environment. The speciation of the adsorbed compounds is quantified in terms of their network connectivity, revealing that pure water has a high probability of forming long, contiguous H-bonded chains in silicalite-1 at high loading, while alcohols form small dimeric/trimeric clusters. The extent to which the H-bond network of binary water鈥揳lcohol systems is altered relative to either unary system is quantified, demonstrating an enhanced interconnectivity that is reflected in the tendency of individual H2O molecules to become co-adsorbed with alcohol clusters in the zeolite framework. Selectivity for the alcohol over water diminishes with increasing alcohol loading as the H-bonded clusters serve as favorable adsorption sites for H2O.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700