用户名: 密码: 验证码:
Accurate Interaction Energies for Problematic Dispersion-Bound Complexes: Homogeneous Dimers of NCCN, P2, and PCCP
详细信息    查看全文
文摘
All intermolecular interactions involve London dispersion forces. The accurate treatment of dispersion is essential for the computation of realistic interaction potentials. In general, the most reliable method for computing intermolecular interactions is coupled-cluster singles and doubles with perturbative triples [CCSD(T)] in conjunction with a sufficiently flexible Gaussian atomic orbital basis set, a combination which is not routinely applicable due to its excessive computational demands (CPU time, memory, storage). Recently, many theoretical methods have been developed that attempt to account for dispersion in a more efficient manner. It is well-known that dispersion interactions are more difficult to compute in some systems than others; for example, 蟺鈥撓€ dispersion is notoriously difficult, while alkane鈥揳lkane dispersion is relatively simple to compute. In this work, numerous theoretical methods are tested for their ability to compute reliable interaction energies in particularly challenging systems, namely, the P2, PCCP, and NCCN dimers. Symmetry-adapted perturbation theory (SAPT) is applied to these dimers to demonstrate their sensitivity to the treatment of dispersion. Due to the small size of these systems, highly accurate CCSD(T) potential energy curves could be estimated at the complete basis set limit. Numerous theoretical methods are tested against the reliable CCSD(T) benchmarks. Methods using a treatment of dispersion that relies on time-dependent density functional theory (TDDFT) response functions are found to be the most reliable.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700