用户名: 密码: 验证码:
Practically Efficient QM/MM Alchemical Free Energy Simulations: The Orthogonal Space Random Walk Strategy
详细信息    查看全文
文摘
The difference between free energy changes occurring at two chemical states can be rigorously estimated via alchemical free energy (AFE) simulations. Traditionally, most AFE simulations are carried out under the classical energy potential treatment; then, accuracy and applicability of AFE simulations are limited. In the present work, we integrate a recent second-order generalized ensemble strategy, the orthogonal space random walk (OSRW) method, into the combined quantum mechanical/molecular mechanical (QM/MM) potential based AFE simulation scheme. Thereby, within a commonly affordable simulation length, accurate QM/MM alchemical free energy simulations can be achieved. As revealed by the model study on the equilibrium of a tautomerization process of hydrated 3-hydroxypyrazole and by the model calculations of the redox potentials of two flavin derivatives, lumichrome (LC) and riboflavin (RF) in aqueous solution, the present OSRW-based scheme could be a viable path toward the realization of practically efficient QM/MM AFE simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700