用户名: 密码: 验证码:
Integrated Bench-Scale Parametric Study on CO2 Capture Using a Carbonic Anhydrase Promoted K2CO3 Solvent with Low Temperature Vacuum Stripping
详细信息    查看全文
文摘
A bench-scale unit was fabricated and used to investigate use of carbonic anhydrase (CA) promoted K2CO3 solvent as an option for CO2 capture from coal-fired power plants. Bench-scale parametric tests were performed at various CA concentrations, solvent flow rates, and reboiler duties. The CO2 capture efficiency significantly increases, and regeneration energy requirement decreases, with increasing CA concentrations up to 2.5 g/L, with capture performance leveling off at higher enzyme doses (up to 4 g/L). Thus, at higher enzyme doses, the capture efficiency is equilibrium rather than kinetically controlled at the top of absorber, when using solvent regenerated via vacuum stripping at high (>35%) lean carbonate to bicarbonate (CTB) conversion levels, which limits the driving force for CO2 absorption. The CO2 capture efficiency also increases when reboiler duty was increased from 0.85 to 1.1 kW, although this also increases the regeneration energy penalty. In contrast, the effect of solvent flow rate on CO2 capture efficiency is less pronounced. Further improvements to the CO2 capture process using CA promoted K2CO3 solvent with low temperature vacuum stripping could be potentially advanced by lowering vacuum pressure, improving strategies for increasing rich CTB conversion (e.g., advanced packing column and optimized L/G ratio), and decreasing absorption temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700