用户名: 密码: 验证码:
Hydrophosphination of Styrene and Polymerization of Vinylpyridine: A Computational Investigation of Calcium-Catalyzed Reactions and the Role of Fluxional Noncovalent Interactions
详细信息    查看全文
  • 作者:Bryan J. WardPatricia A. Hunt
  • 刊名:ACS Catalysis
  • 出版年:2017
  • 出版时间:January 6, 2017
  • 年:2017
  • 卷:7
  • 期:1
  • 页码:459-468
  • 全文大小:629K
  • ISSN:2155-5435
文摘
A computational investigation of the intermolecular hydrophosphination of styrene and 2-vinylpyridine, catalyzed by the heteroleptic β-diketiminato-stabilized calcium complex [(PhNC(Me)CHC(Me)NPh)CaPPh2], is presented. Alkene insertion does not proceed via the traditional route as proposed by experimental and theoretical research related to intermolecular hydroamination catalyzed by alkaline earth or lanthanide complexes. In contrast, for the hydrophosphination mechanism, insertion proceeds via outer sphere, conjugative addition where there is no direct interaction of Ca with the vinyl functionality. Following the initial rate-determining alkene insertion, two distinct mechanisms emerge, protonolysis or polymerization. Polymerization of styrene is energetically less favorable than protonolysis, whereas the reverse is determined for 2-vinylpyridine, thereby providing strong evidence of outcomes observed experimentally. The vinylarene ring is important as it allows for preferential coordination of the unsaturated substrate through numerous noncovalent Ca···π, CH···π, and Ca ← E (E = P or N) interactions; moreover, the vinylarene ring counteracts unfavorable charge localization within the activated transition state. The additional stability of the Ca ← N over Ca ← P dative interaction in vinylpyridine provides a rationalization for the experimentally observed enhanced reactivity of vinylpyridine, particularly in the context of the almost identical local alkene insertion barriers. Previously, little emphasis has been placed on the involvement of noncovalent interactions; however, our calculations reveal that Ca···π, CH···π, and Ca ← donor interactions are critical, stabilizing key intermediates and transition states, while also introducing numerous competitive pathways.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700