用户名: 密码: 验证码:
Microwave Funneling through Sub-10 nm Nanogaps
详细信息    查看全文
文摘
We demonstrate microwave funneling through metallic gaps of nanometer-scale width, corresponding to λ/10 000 000. For achieving both resonant transmission and strong confinement of microwaves, we fabricate two types of samples with an extreme aspect ratio: 300 nm wide, 3.5 mm long slots and sub-10 nm wide rectangular rings with a perimeter of 6.5 mm. Considering the peak transmittance value of 45% and the small coverage ratio of transparent area in the nanogap surface, we can infer a giant intensity enhancement factor of up to 25 million inside the nanogaps. The polarization extinction ratio up to 20 dB indicates that the microwave transmission originates from capacitive coupling of the induced charges at the sidewalls of a metallic gap. We also measure terahertz transmittance and observe a convergence to the microwave range. Our work represents the highest field enhancement recorded for the microwave regime, made possible by wafer-scale-length nanogaps matching the wavelengths, with future applications in centimeter wave nonlinearities and enhanced detection sensitivities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700