用户名: 密码: 验证码:
Modeling Spin-Forbidden Monomer Self-Initiation Reactions in Spontaneous Free-Radical Polymerization of Acrylates and Methacrylates
详细信息    查看全文
文摘
A spin-forbidden reaction is a reaction in which the total electronic spin-state changes. The standard transition-state theory that assumes a reaction occurs on a single potential energy surface with spin-conservation cannot be applied to a spin-forbidden reaction directly. In this work, we derive the crossing coefficient based on the Wentzel鈥揔ramers鈥揃rillouin (WKB) theory to quantify the effect of intersystem crossing on the kinetics of spin-forbidden reactions. Acrylates and methacrylates, by themselves, can generate free radicals that initiate polymerization at temperatures above 120 掳C. Previous studies suggest that a triplet diradical is a key intermediate in the self-initiation. The formation of a triplet diradical from two closed-shell monomer molecules is a spin-forbidden reaction. This study provides a quantitative analysis of singlet鈥搕riplet spin crossover of diradical species in self-initiation of acrylates and methacrylates, taking into account the effect of intersystem crossing. The concept of crossing control is introduced and demonstrated computationally to be a new likely route to generate monoradicals via monomer self-initiation in high temperature polymerization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700