用户名: 密码: 验证码:
Change in Organic Molecule Adhesion on 伪-Alumina (Sapphire) with Change in NaCl and CaCl2 Solution Salinity
详细信息    查看全文
文摘
We investigated the adhesion of two functional groups to 伪-alumina as a model for the adsorption of organic molecules on clay minerals. Interactions between organic compounds and clay minerals play an important role in processes such as drinking water treatment, remediation of contaminated soil, oil recovery, and fabricating complicated nanomaterials, and there have been claims that organic compound鈥揷lay mineral interaction created the ordering that is necessary for the genesis of life. In many organisms, interaction between organic molecules and biominerals makes it possible to control the growth of bones, teeth, and shells. Adhesion of carboxylic acid, 鈭扖OO(H), and pyridine, 鈭扖5H5N(H+), on the {0001} plane of 伪-alumina wafers has been investigated with atomic force microscopy (AFM) in chemical force mapping (CFM) mode. Both functional groups adhered to 伪-alumina in deionized water at pH < 5, and adhesion decreased as NaCl or CaCl2 concentration increased. X-ray photoelectron spectroscopy (XPS) showed that Na+ and Ca2+ adsorbed to the 伪-alumina surface at pH < 5, decreasing surface interaction with the carboxylic acid and pyridine groups. We interpret the results as evidence that the tips adhere to alumina through hydrogen bonding when only water is present. In solutions containing NaCl and CaCl2, cations are adsorbed but Cl鈥?/sup> is not. When NaCl solutions are replaced by CaCl2, Ca2+ replaces Na+, but rinsing with ultrapure deionized water (pH 5.6) could not restore the original protonated surface. The results demonstrate that the alumina surface at pH 3 has a higher affinity for inorganic cations than for 鈭扖OO(H) or 鈭扖5H5N(H+), in spite of the known positive surface charge of 伪-alumina {0001} wafers. These results demonstrate that solution salinity plays an important role in surface properties, controlling surface tension (i.e., contact angle) and adsorption affinity on 伪-alumina and, by analogy, on clay minerals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700