用户名: 密码: 验证码:
Ion Correlations in Nanofluidic Channels: Effects of Ion Size, Valence, and Concentration on Voltage- and Pressure-Driven Currents
详细信息    查看全文
  • 作者:Jordan Hoffmann ; Dirk Gillespie
  • 刊名:Langmuir
  • 出版年:2013
  • 出版时间:January 29, 2013
  • 年:2013
  • 卷:29
  • 期:4
  • 页码:1303-1317
  • 全文大小:860K
  • 年卷期:v.29,no.4(January 29, 2013)
  • ISSN:1520-5827
文摘
The effects of ion鈥搃on and ion鈥搘all correlations in nanochannels are explored, specifically how they influence voltage- and pressure-driven currents and pressure-to-voltage energy conversion. Cations of different diameters (0.15, 0.3, and 0.9 nm) and different valences (+1, +2, and +3) at concentrations ranging from 10鈥? M to 1 M are considered in 50-nm- and 100-nm-wide nanoslits with wall surface charges ranging from 0 C/m2 to 鈭?.3 C/m2. These parameters are typical of nanofluidic devices. Ion correlations have significant effects on device properties over large parts of this parameter space. These effects are the result of ion layering (oscillatory concentration profiles) for large monovalent cations and charge inversion (more cations in the first layer near the wall than necessary to neutralize the surface charge) for the multivalent cations. The ions were modeled as charged, hard spheres using density functional theory of fluids, and current was computed with the Navier鈥揝tokes equations with two different no-slip conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700