用户名: 密码: 验证码:
Sustainable, Biobased Silicone with Layered Double Hydroxide Hybrid and Their Application in Natural-Fiber Reinforced Phenolic Composites with Enhanced Performance
详细信息    查看全文
文摘
With wide application of natural fibers in polymer composites, improvements in their flame retardancy, water absorption, and electrical resistance become an urgent need. To this end, 4.5 wt % of layered double hydroxide (LDH) is introduced into sisal fiber reinforced biobased silicone modified phenolic composites. The modified composites optimally shows 60% reduction in total heat release (20.2 MJ/m2) compared to the composites without LDH. In addition, the biobased silicone modifier TDS is incorporated into phenolic resins (SPF), to further reduce water absorption rate to 6 wt %, and increase volume electrical resistance up to 4.6 × 1016 Ω m. The SPF-SF-SDBSLDH exhibits a high impact strength of 4.2 kJ/m2, over 50% higher than the unmodified PF-SF composites. The SEM observations show that the SPF composites exhibit better interfacial interaction with sisal fiber than normal phenolic (PF) composites. All these flame retardant, impact strength and electrical resistance properties are compatible with the requirement for applications as molding compounds. Our research provides a cost-effective method to improve the performance of this sustainable natural-fiber reinforced composites with novel and low cost biobased silicone modifier and LDHs. These high performance composites are promising for applications in high technology areas such as the microelectric industry and lightweight automotives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700