用户名: 密码: 验证码:
Mechanism of MTO-Catalyzed Deoxydehydration of Diols to Alkenes Using Sacrificial Alcohols
详细信息    查看全文
文摘
Catalytic deoxydehydration (DODH) of vicinal diols is carried out employing methyltrioxorhenium (MTO) as the catalyst and a sacrificial alcohol as the reducing agent. The reaction kinetics feature an induction period when MTO is added last and show zero-order in [diol] and half-order dependence on [catalyst]. The rate-determining step involves reaction with alcohol, as evidenced by a KIE of 1.4 and a large negative entropy of activation (螖S鈥?/sup> = 鈭?54 卤 33 J mol鈥? K鈥?). The active form of the catalyst is methyldioxorhenium(V) (MDO), which is formed by reduction of MTO by alcohol or via a novel C鈥揅 bond cleavage of an MTO-diolate complex. The majority of the MDO-diolate complex is present in dinuclear form, giving rise to the [Re]1/2 dependence. The MDO-diolate complex undergoes further reduction by alcohol in the rate-determining step to give rise to a putative rhenium(III) diolate. The latter is the active species in DODH extruding stereoselectively trans-stilbene from (R,R)-(+)-hydrobenzoin to regenerate MDO and complete the catalytic cycle.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700