用户名: 密码: 验证码:
Computational Fluid Dynamics Based Optimal Design of Guiding Channel Geometry in U-Type Coolant Layer Manifold of Large-Scale Microchannel Fischer–Tropsch Reactor
详细信息    查看全文
文摘
A microchannel Fischer–Tropsch reactor retaining high heat and mass transfer performance requires uniform flow distribution on the coolant side to induce isothermal condition for controllable and sustainable operation. The present work improved the flow performance of a large-scale layer of over 100 channels by introducing an extremely simple guiding fin in the inlet and outlet rectangular manifolds. Case studies with three-dimensional computational fluid dynamics (CFD) were carried out where the upper and bottom lengths of the guiding fin were the main geometric variables. Then the optimization work was conducted to estimate the performance of the optimal design. The robustness for the proposed geometry was tested with varying the flow rate, fluid type, and temperature. The result showed that the proposed design can retain uniform distribution over a wide operation range (500 ≤ ReGF ≤ 10800).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700