用户名: 密码: 验证码:
DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays
详细信息    查看全文
文摘
Zinc oxide (ZnO) is a highly important material, and Zn2+ is a key metal ion in biology. ZnO and Zn2+ interconvert via dissolution and hydrolysis/condensation. In this work, we explore their interactions with DNA, which is important for biointerface, analytical, and bioinorganic chemistry. Fluorescently labeled DNA oligonucleotides were adsorbed by a low concentration (around 5 μg/mL) of ZnO nanoparticles, near the solubility limit. Right after mixing, fluorescence quenching occurred, indicating DNA adsorption. Then, fluorescence recovered, attributable to ZnO dissolution. The dissolution rate followed A5 > T5 > C5. Dissolution was slower with longer DNA. The adsorption affinity was also measured by a displacement assay to be G5 > C5 > T5 > A5, suggesting that tightly adsorbed DNA can retard ZnO dissolution. Electrostatic interactions are important for DNA adsorption because ZnO is positively charged at neutral pH, and a high salt concentration inhibits DNA adsorption. Next, in situ formation of ZnO from Zn2+ was studied. First, titrating Zn2+ into a fluorescently labeled oligonucleotide at pH 7.5 resulted in an abrupt fluorescence quenching beyond 0.2 mM Zn2+. At pH 6, quenching occurred linearly with the Zn2+ concentration, suggesting the effect of Zn2+ precipitation at pH 7.5. Second, a Zn2+-dependent DNA-cleaving DNAzyme was studied. This DNAzyme was inhibited at higher than 2 mM Zn2+, attributable to Zn2+ precipitation and adsorption of the DNAzyme. This paper has established the interplay between DNA, Zn2+, and ZnO. This understanding can avoid misinterpretation of DNA assay results and adds knowledge to DNA immobilization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700