用户名: 密码: 验证码:
Kinetic Analysis of Superoxide Anion Radical-Scavenging and Hydroxyl Radical-Scavenging Activities of Platinum Nanoparticles
详细信息    查看全文
文摘
There are few reports on the physiological effects of metal nanoparticles (nps), especially with respect to their functions as scavengers for superoxide anion radical (O2·−) and hydroxyl radical (·OH). We tried to detect the scavenging activity of Pt nps using a hypoxanthine−xanthine oxidase system for O2·− and using a Fenton and a UV/H2O2 system for ·OH. Electron spin resonance analysis revealed that 2 nm particle size Pt nps have the ability to scavenge O2·− and ·OH. The calculated rate constant for the O2·−-scavenging reaction was 5.03 0.03 × 107 M−1 s−1. However, the analysis of the Fenton and UV/H2O2 system in the presence of Pt nps suggested that the ·OH-scavenging reaction cannot be determined in both systems. Among particle sizes tested from 1 to 5 nm, 1 nm Pt nps showed the highest O2·−-scavenging ability. Almost no cytotoxicity was observed even after adherent cells (TIG-1, HeLa, HepG2, WI-38, and MRC-5) were exposed to Pt nps at concentrations as high as 50 mg/L. Pt nps scavenged intrinsically generated reactive oxygen species (ROS) in HeLa cells. Additionally, Pt nps significantly reduced the levels of intracellular O2·− generated by UVA irradiation and subsequently protected HeLa cells from ROS damage-induced cell death. These findings suggest that Pt nps may be a new type of antioxidant capable of circumventing the paradoxical effects of conventional antioxidants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700