用户名: 密码: 验证码:
Cooperative Effects in Aligned and Opposed Multicomponent Charge Gradients Containing Strongly Acidic, Weakly Acidic, and Basic Functional Groups
详细信息    查看全文
文摘
Bifunctionalized surface charge gradients in which the individual component gradients either align with or oppose each other have been prepared. The multicomponent gradients contain strongly acidic, weakly acidic, and basic functionalities that cooperatively interact to define surface wettability, nanoparticle binding, and surface charge. The two-step process for gradient formation begins by modifying a siloxane coated silicon wafer in a spatially dependent fashion first with an aminoalkoxysilane and then with a mercapto-functionalized alkoxysilane. Immersion in hydrogen peroxide leads to oxidation of the surface immobilized sulfhydryl groups and subsequent protonation of the surface immobilized amines. Very different surface chemistries were obtained from gradients that either align with or oppose each other. X-ray photoelectron spectroscopy (XPS) data show that the degree of amine group protonation depends on the local concentration of sulfonate groups, which form ion pairs with the resulting ammonium ions. Contact angle measurements show that these ion pairs greatly enhance the wettability of the gradient surface. Finally, studies of colloidal gold binding show that the presence of both amine and thiol moieties enhance colloid binding, which is also influenced by surface charge. Cooperativity is also revealed in the distribution of charges on uniform samples used as models of the gradient surfaces, as evaluated via zeta potential measurements. Most significantly, the net surface charge and how it changes with distance and solution pH strongly depend on whether the gradients in amine and thiol align or oppose each other. The aligned multicomponent gradients show the most interesting behavior in that there appears to be a point at pH ∼ 6.5 where surface charge remains constant with distance. Setting the pH above or below this transition point leads to changes in the direction of charge variation along the length of the substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700