用户名: 密码: 验证码:
Understanding the Biosynthesis and Catalytic Activity of Pd, Pt, and Ag Nanoparticles in Hydrogenation and Suzuki Coupling Reactions at the Nano鈥揃io Interface
详细信息    查看全文
文摘
Increasing demand of noble-metal nanoparticles (MNPs) in catalysis research urges the development of a nontoxic, clean, and environmentally friendly methodology for the production of MNPs on solid surface. Herein we have developed a facile approach for biosynthesis of MNPs (Pd, Pt, and Ag) on the surface of Rhizopous oryzae mycelia through in situ reduction process without using any toxic chemicals. The size and shape of the biosynthesized MNPs varied among the MNPs, and 鈥渇lower鈥?like branched nanoparticles were obtained in case of Pd and Pt, while Ag produced spheroidal nanoparticles. The cell-surface proteins of the mycelia acted as protecting, reducing, and shape-directing agent to control the size and shape of the synthesized MNPs. Proteins of 78, 62, and 55 kDa were bound on the MNPs surfaces and played a significant role in determining the morphology of the MNPs. The catalytic efficiency varied among the MNPs, and Pd nanoflower exhibited superior catalytic activities in both hydrogenation and Suzuki coupling reactions. Surface composition, concentration, and intracellular localization of MNPs determine the catalytic activity of the biosynthesized MNPs. The nanocatalyst could be easily separated and reused multiple times without significant loss in activity (95% average conversion). Overall, the understanding of this complex biomineralization mechanism and catalytic behavior at the nano鈥揵io interface has provided an alternative for the synthesis of supported metal nanocatalyst to improve the environmental sustainability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700