用户名: 密码: 验证码:
Using Force Matching To Determine Reactive Force Fields for Water under Extreme Thermodynamic Conditions
详细信息    查看全文
  • 作者:Lucas Koziol ; Laurence E. Fried ; Nir Goldman
  • 刊名:Journal of Chemical Theory and Computation
  • 出版年:2017
  • 出版时间:January 10, 2017
  • 年:2017
  • 卷:13
  • 期:1
  • 页码:135-146
  • 全文大小:610K
  • ISSN:1549-9626
文摘
We present a method for the creation of classical force fields for water under dissociative thermodynamic conditions by force matching to molecular dynamics trajectories from Kohn–Sham density functional theory (DFT). We apply our method to liquid water under dissociative conditions, where molecular lifetimes are less than 1 ps, and superionic water, where hydrogen ions diffuse at liquid-like rates through an oxygen lattice. We find that, in general, our new models are capable of accurately reproducing the structural and dynamic properties computed from DFT, as well as the molecular concentrations and lifetimes. Overall, our force-matching approach presents a relatively simple way to create classical reactive force fields for a single thermodynamic state point that largely retains the accuracy of DFT while having the potential to access experimental time and length scales.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700