用户名: 密码: 验证码:
Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy
详细信息    查看全文
文摘
Oxygenation of [Cu2(UN-O)(DMF)]2+ (1), a structurally characterized dicopper Robin–Day class I mixed-valent Cu(II)Cu(I) complex, with UN-O as a binucleating ligand and where dimethylformamide (DMF) binds to the Cu(II) ion, leads to a superoxo-dicopper(II) species [CuII2(UN-O)(O2•–)]2+ (2). The formation kinetics provide that kon = 9 × 10–2 M–1 s–1 (−80 °C), ΔH = 31.1 kJ mol–1 and ΔS = −99.4 J K–1 mol–1 (from −60 to −90 °C data). Complex 2 can be reversibly reduced to the peroxide species [CuII2(UN-O)(O22–)]+ (3), using varying outer-sphere ferrocene or ferrocenium redox reagents. A Nernstian analysis could be performed by utilizing a monodiphenylamine substituted ferrocenium salt to oxidize 3, leading to an equilibrium mixture with Ket = 5.3 (−80 °C); a standard reduction potential for the superoxo–peroxo pair is calculated to be E° = +130 mV vs SCE. A literature survey shows that this value falls into the range of biologically relevant redox reagents, e.g., cytochrome c and an organic solvent solubilized ascorbate anion. Using mixed-isotope resonance Raman (rRaman) spectroscopic characterization, accompanied by DFT calculations, it is shown that the superoxo complex consists of a mixture of μ-1,2- (21,2) and μ-1,1- (21,1) isomers, which are in rapid equilibrium. The electron transfer process involves only the μ-1,2-superoxo complex [CuII2(UN-O)(μ-1,2-O2•–)]2+ (21,2) and μ-1,2-peroxo structures [CuII2(UN-O)(O22–)]+ (3) having a small bond reorganization energy of 0.4 eV (λin). A stopped-flow kinetic study results reveal an outer-sphere electron transfer process with a total reorganization energy (λ) of 1.1 eV between 21,2 and 3 calculated in the context of Marcus theory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700