用户名: 密码: 验证码:
Local Site Distribution of Oxygen in Silicon-Rich Oxide Thin Films: A Tool to Investigate Phase Separation
详细信息    查看全文
文摘
Thin films of nonstoichiometric silicon oxide (SiOx with x < 2) have been studied extensively during the past few decades because of their importance in many electronic and optoelectronic applications, and particular attention has been paid to models that can better describe their global structure. Herein, we present a detailed study of SiOx films deposited on silicon(111) and silica substrates using the low-pressure chemical vapor deposition (LPCVD) method by thermal oxidation of silane in an oxygen atmosphere at a temperature of 570 掳C. The oxygen and silane flows in the reactor were varied to obtain films with different values of oxygen content x. Ellipsometry and m-line measurements were used to determine the complex refractive index of the deposited films. The oxygen contents in the films were measured by infrared spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and time-of-flight elastic recoil detection analysis (TOF-ERDA). The oxygen contents in the films were also estimated from the measured values of the complex refractive indices using Bruggeman鈥檚 effective-medium aproximation (EMA). All of the results were in good agreement, except for those obtained from infrared spectroscopy, which corresponded to systematically higher oxygen contents. This effect was interpreted as being due to an inhomogeneous distribution of oxygen atoms in the films (phase separation). This issue was confirmed by X-ray photoelectron spectroscopy (XPS) analysis of the Si 2p core levels, which showed an almost-complete phase separation of the silicon-rich oxides into amorphous silicon and silicon dioxide, indicating that the mixture model is the most appropriate for the present films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700