用户名: 密码: 验证码:
Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations
详细信息    查看全文
文摘
Apolipoproteins form amphipathic helical structures that bind lipid surfaces. Paradoxically, lipid-free apolipoproteins display a strong propensity to form cross-β structure and self-associate into disease-related amyloid fibrils. Studies of apolipoprotein C-II (apoC-II) amyloid fibrils suggest that a K30-D69 ion pair accounts for the dual abilities to form helix and cross-β structure. Consistent with this is the observation that a K30D mutation prevents fibril formation under standard fibril forming conditions. However, we found that fibril formation by K30D apoC-II proceeded readily at low pH and a higher salt or protein concentration. Structural analysis demonstrated that K30D apoC-II fibrils at pH 7 have a structure similar to that of the wild-type fibrils but are less stable. Molecular dynamics simulations of the wild-type apoC-II fibril model at pH 7 and 3 showed that the loss of charge on D69 at pH 3 leads to greater separation between residues K30 and D69 within the fibril with a corresponding reduction in β-strand content around residue 30. In contrast, in simulations of the K30D mutant model at pH 7 and 3, residues D30 and D69 moved closer at pH 3, accompanied by an increase in β-strand content around residue 30. The simulations also demonstrated a strong dominance of inter- over intramolecular contacts between ionic residues of apoC-II and suggested a cooperative mechanism for forming favorable interactions between the individual strands under different conditions. These observations demonstrate the important role of the buried K30-D69 ion pair in the stability and solution properties of apoC-II amyloid fibrils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700