用户名: 密码: 验证码:
Molecular Origin of Electric Double-Layer Capacitance at Multilayer Graphene Edges
详细信息    查看全文
文摘
Multilayer graphenes have been widely used as active materials for electric double-layer capacitors (EDLCs), where their numerous edges are demonstrated to play a crucial role in charge storage. In this work, the interfacial structure and capacitive behaviors of multilayer graphene edges with representative interlayer spacing are studied via molecular dynamics (MD) simulations. Compared with planar graphite surfaces, edges can achieve a 2-fold increase in the specific capacitance at a wider interlayer spacing of ∼5.0 Å. Unusually, the molecular origins for achieved charge storage are predominantly attributed to the structural evolutions of solvents occurring in the double layer, going beyond the traditional views of regulating the capacitance by ion adsorption/separation. Specifically, diverse ionic distributions exhibit similar screening ability and EDLC thickness, while water molecules can counterbalance the interfacial electric fields more effectively at edge site. The as-obtained findings will be instructive in designing graphene-based EDLCs for advanced capacitive performances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700