用户名: 密码: 验证码:
Synthesis of Carbohydrates in Mineral-Guided Prebiotic Cycles
详细信息    查看全文
文摘
One present obstacle to the 鈥淩NA-first鈥?model for the origin of life is an inability to generate reasonable 鈥渉ands off鈥?scenarios for the formation of carbohydrates under conditions where they might have survived for reasonable times once formed. Such scenarios would be especially compelling if they deliver pent(ul)oses, five-carbon sugars found in terran genetics, and exclude other carbohydrates (e.g., aldotetroses) that may also be able to function in genetic systems. Here, we provide detailed chemical analyses of carbohydrate premetabolism, showing how borate, molybdate, and calcium minerals guide the formation of tetroses (C4H8O4), heptoses (C7H14O7), and pentoses (C5H10O5), including the ribose found in RNA, in 鈥渉ands off鈥?experiments, starting with formaldehyde and glycolaldehyde. These results show that pent(ul)oses would almost certainly have formed as stable borate complexes on the surface of an early Earth beneath a humid CO2 atmosphere suffering electrical discharge. While aldotetroses form extremely stable complexes with borate, they are not accessible by pathways plausible under the most likely early Earth scenarios. The stabilization by borate is not, however, absolute. Over longer times, material is expected to have passed from borate-bound pent(ul)oses to a branched heptulose, which is susceptible to Cannizzaro reduction to give dead end products. We show how this fate might be avoided using molybdate-catalyzed rearrangement of a branched pentose that is central to borate-moderated cycles that fix carbon from formaldehyde. Our emerging understanding of the nature of the early Earth, including the presence of hydrated rocks undergoing subduction to form felsic magmas in the early Hadean eon, may have made borate and molydate species available to prebiotic chemistry, despite the overall 鈥渞educed鈥?state of the planet.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700