用户名: 密码: 验证码:
Friction Reduction Mechanism of Hydrogen- and Fluorine-Terminated Diamond-Like Carbon Films Investigated by Molecular Dynamics and Quantum Chemical Calculation
详细信息    查看全文
文摘
The friction reduction mechanisms of diamond-like carbon (DLC) and H- or F-terminated DLC films were investigated using molecular dynamics (MD) and tight-binding quantum chemistry (TBQC) calculations. Atomistic-scale friction dynamics of both DLC and the surface-terminated DLC model in which the unsaturated bonds on their surface were terminated with H or F atoms were investigated by MD. The F-terminated DLC model showed lower friction than that of the H-terminated DLC model because of the stronger repulsive Coulombic force between F atoms at the surfaces. On the other hand, strong van der Waals interaction acting on the interface was observed for the H-terminated DLC model compared to that for the F-terminated DLC models. TBQC calculation indicates a bonding interaction between the surfaces of DLC, while the antibonding interaction was observed for the surface-terminated DLC model. Those interactions would make the difference in the friction properties among the studied models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700