用户名: 密码: 验证码:
Translational and Rotational Diffusion of Two Differently Charged Solutes in Ethylammonium Nitrate–Methanol Mixture: Does the Nanostructure of the Amphiphiles Influence the Motion of the Solute?
详细信息    查看全文
  • 作者:Niloy Kundu ; Arpita Roy ; Rupam Dutta ; Nilmoni Sarkar
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2016
  • 出版时间:June 23, 2016
  • 年:2016
  • 卷:120
  • 期:24
  • 页码:5481-5490
  • 全文大小:583K
  • 年卷期:0
  • ISSN:1520-5207
文摘
In this Article, we have investigated the translational and rotational diffusion of two structurally similar but differently charged solutes (rhodamine 6G perchlorate and fluorescein sodium salt) in ethylammonium nitrate (EAN)–methanol (CH3OH) mixture to understand the effect of added ionic liquid on the motion of the solutes. EAN and CH3OH both are amphiphilic molecules and characterized by an extended hydrogen bonding network. Recently, Russina et al. found that a wide distribution of clusters exist in the CH3OH rich region (0.10 ≤ χEAN ≤ 0.15) and EAN molecules preserve their bulk-sponge-like morphology (Russina, O.; Sferrazza, A.; Caminiti, R.; Triolo, A. J. Phys. Chem. Lett. 2014, 5, 1738–1742). The effect of this microheterogeneous mixture on the solute’s motion shows some interesting results compared to other PIL (protic ionic liquid)–cosolvent mixtures. Analysis of the time-resolved anisotropy data with the aid of Stokes–Einstein–Debye (SED) hydrodynamic theory predicts that the reorientation time of both of the solutes appears close to the stick hydrodynamic line in the methanol rich region. The hydrogen bond accepting solutes experience specific interaction with CH3OH, and with increasing concentration of EAN, the specific interaction between the solute and solvent molecules is decreased while the decrease is more prominent in the low mole fraction of EAN due to the large size of cluster formation. The temperature dependent anisotropy measurements show that the hydrogen bonding interaction between EAN and CH3OH is increased with increasing temperature. Moreover, fluorescence correlation spectroscopy (FCS) shows the dynamic heterogeneity of the mixture which is due to the segregation of the alkyl chain of the PIL. Formation of a large cluster at a low mole fraction of IL (0.10 ≤ χEAN ≤ 0.15) can be proved by the insensitivity of the translational diffusion and rotational activation energy of the solutes to the concentration of EAN. Thus, the result of the work suggests that the addition of EAN to the CH3OH affects the specific interaction between solute and solvent and, as a consequence, the translational motion as well as the rotational motion of the solutes are modulated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700