用户名: 密码: 验证码:
In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces
详细信息    查看全文
文摘
Osteosarcoma cell viability, proliferation, and differentiation into osteoblasts on a silicon nitride bioceramic were examined as a function of chemical modifications of its as-fired surface. Biological and spectroscopic analyses showed that (i) postsintering annealing in N2 gas significantly improved apatite formation from human osteosarcoma (SaOS-2) cells; (ii) in situ Raman spectroscopic monitoring revealed new metabolic details of the SaOS-2 cells, including fine differences in intracellular RNA and membrane phospholipids; and (iii) the enhanced apatite formation originated from a high density of positively charged surface groups, including both nitrogen vacancies (VN3+) and nitrogen N–N bonds (N4+) formed during annealing in N2 gas. At homeostatic pH, these positive surface charges promoted binding of proteins onto an otherwise negatively charged surface of deprotonated silanols (SiO). A dipole-like electric-charge, which includes VN3+/N4+ and SiO defective sites, is proposed as a mechanism to explain the attractive forces between transmembrane proteins and the COO and NH2+ termini, respectively. This is analogous to the mechanism occurring in mineral hydroxyapatite where protein groups are specifically displaced by the presence of positively charged calcium loci (Ca+) and off-stoichiometry phosphorus sites (PO42–).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700