用户名: 密码: 验证码:
Molecular Precursor Induced Surface Reconstruction at Graphene/Pt(111) Interfaces
详细信息    查看全文
  • 作者:Qian Wang ; Rui Pang ; Xingqiang Shi
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2015
  • 出版时间:October 1, 2015
  • 年:2015
  • 卷:119
  • 期:39
  • 页码:22534-22541
  • 全文大小:505K
  • ISSN:1932-7455
文摘
Inspired by experimental observations of Pt(111) surfaces reconstruction at the Pt/graphene (Gr) interfaces with ordered vacancy networks in the outermost Pt layer [e.g., Otero, G., et al. Phys. Rev. Lett. 2010, 105, 216102], the mechanism of the surface reconstruction is investigated by van der Waals corrected density functional theory in combination with particle-swarm optimization algorithm and ab initio atomistic thermodynamics. Our global structural search finds a more stable reconstructed structure than that which was reported before. With correction for vacancy formation energy, we demonstrate that the experimental observed surface reconstruction occurred at the earlier stages of graphene formation: (1) reconstruction occurred when C60 adsorption (before decomposition to form graphene) for C60 precursor or (2) reconstruction occurred when there were (partial) hydrogens remain in the hydrogenated precursors of C2H4 and planar C60H30. The reason is attributed to the fact that the energy gain, from the strengthened Pt鈥揅 partial sp3鈥搇ike bonding for C of C60 or for C with partial H (than Pt鈥揋r bonding), compensates for the energy cost of formation surface vacancies and makes the reconstruction feasible, especially at elevated temperatures. In our predicted reconstructed structure Pt鈥揅 covalent bonds are formed that have a great impact on the adsorbed Gr electronic structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700