用户名: 密码: 验证码:
Improving Performance Metrics of Ultraviolet Photodissociation Mass Spectrometry by Selective Precursor Ejection
详细信息    查看全文
  • 作者:Dustin D. Holden ; Jennifer S. Brodbelt
  • 刊名:Analytical Chemistry
  • 出版年:2017
  • 出版时间:January 3, 2017
  • 年:2017
  • 卷:89
  • 期:1
  • 页码:837-846
  • 全文大小:661K
  • ISSN:1520-6882
文摘
Confident protein identifications derived from high-throughput bottom-up and top-down proteomics workflows depend on acquisition of thousands of tandem mass spectrometry (MS/MS) spectra with adequate signal-to-noise and accurate mass assignments of the fragment ions. Ultraviolet photodissociation (UVPD) using 193 nm photons has proven to be well-suited for activation and fragmentation of peptides and proteins in ion trap mass spectrometers, but the spectral signal-to-noise ratio (S/N) is typically lower than that obtained from collisional activation methods. The lower S/N is attributed to the dispersion of ion current among numerous fragment ion channels (a,b,c,x,y,z ions). In addition, frequently UVPD is performed such that a relatively large population of precursor ions remains undissociated after the UV photoactivation period in order to prevent overdissociation into small uninformative or internal fragment ions. Here we report a method to improve spectral S/N and increase the accuracy of mass assignments of UVPD mass spectra via resonance ejection of undissociated precursor ions after photoactivation. This strategy, termed precursor ejection UVPD or PE-UVPD, allows the ion trap to be filled with more ions prior to UVPD while at the same time alleviating the space charge problems that would otherwise contribute to the skewing of mass assignments and reduction of S/N. Here we report the performance gains by implementation of PE-UVPD for peptide analysis in an ion trap mass spectrometer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700