用户名: 密码: 验证码:
Geochemical Parameters and Reductive Dechlorination Determine Aerobic Cometabolic vs Aerobic Metabolic Vinyl Chloride Biodegradation at Oxic/Anoxic Interface of Hyporheic Zones
详细信息    查看全文
文摘
Hyporheic zones mediate vinyl chloride (VC) biodegradation in groundwater discharging into surface waters. At the oxic/anoxic interface (OAI) of hyporheic zones subjected to redox oscillations, VC is degraded via coexisting aerobic ethenotrophic and anaerobic reductive dechlorination pathways. However, the identity of aerobic VC degradation pathways (cometabolic vs metabolic) and their interactions with reductive dechlorination in relation to riverbed sediment geochemistry remain ill-defined. We addressed this using microcosms containing OAI sediments incubated under fluctuating oxic/anoxic atmosphere. Under oxic atmosphere, aerobic metabolic VC oxidation was absent in sediments with high total organic carbon (TOC) and VC was reductively dechlorinated to ethene. Ethene was oxidized by ethenotrophs that can degrade VC cometabolically. Contrastingly, VC was metabolically oxidized by ethenotrophs in low-TOC sediments with low reductive dechlorination potential. Accordingly, enrichment and isolation of metabolic VC-oxidizing ethenotrophs was successful only from the low-TOC sediment. Sequence analysis of etnE genes from the microcosms as well phylogenetic typing of the isolates showed that ethenotrophs in the sediments were facultative anaerobic Proteobacteria capable of coping with OAI-associated redox fluctuations. Our results suggest that local sediment heterogeneity supports/selects divergent VC degradation processes at the OAI and that high reductive dechlorination potential suppresses development of aerobic metabolic VC oxidation potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700