用户名: 密码: 验证码:
Self-Assembly PEGylation Retaining Activity (SPRA) Technology via a Host–Guest Interaction Surpassing Conventional PEGylation Methods of Proteins
详细信息    查看全文
文摘
Polyethylene glycol (PEG) modification (PEGylation) is one of the best approaches to improve the stabilities and blood half-lives of protein drugs; however, PEGylation dramatically reduces the bioactivities of protein drugs. Here, we present “self-assembly PEGylation retaining activity” (SPRA) technology via a host–guest interaction between PEGylated β-cyclodextrin (PEG-β-CyD) and adamantane-appended (Ad) proteins. PEG-β-CyD formed stable complexes with Ad-insulin and Ad-lysozyme to yield SPRA-insulin and SPRA-lysozyme, respectively. Both SPRA-proteins showed high stability against heat and trypsin digest, comparable with that of covalently PEGylated protein equivalents. Importantly, the SPRA-lysozyme possessed ca. 100% lytic activity, whereas the activity of the covalently PEGylated lysozyme was ca. 23%. Additionally, SPRA-insulin provided a prolonged and peakless blood glucose profile when compared with insulin glargine. It also showed no loss of activity. In contrast, the covalently PEGylated insulin showed a negligible hypoglycemic effect. These findings indicate that SPRA technology has potential as a generic method, surpassing conventional PEGylation methods for proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700