用户名: 密码: 验证码:
Investigation of Many-Body Correlation in Biexcitonic Systems Using Electron–Hole Multicomponent Coupled-Cluster Theory
详细信息    查看全文
  • 作者:Benjamin H. Ellis ; Arindam Chakraborty
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2017
  • 出版时间:January 19, 2017
  • 年:2017
  • 卷:121
  • 期:2
  • 页码:1291-1298
  • 全文大小:482K
  • ISSN:1932-7455
文摘
Generation of biexcitons in semiconductor nanoparticles has important technological applications in designing efficient light-harvesting materials. Like excitons, the attractive electron–hole interaction terms are responsible for binding in biexcitonic systems. However, unlike excitons, electron–electron and hole–hole repulsive components also contribute to the overall interaction in a biexcitonic system. Consequently, a balanced treatment of many-body correlation associated with electron–electron, hole–hole, and electron–hole interactions is needed for understanding quaisparticle binding in biexcitons. This work presents a theoretical investigation of the effect of size and chemical composition on biexciton binding energies in semiconductor nanoparticles using the electron–hole multicomponent coupled-cluster theory (eh-mcCC). Exciton and biexciton binding energies for quantum dots with diameters 1–20 nm for four semiconductor materials (CdSe, CdS, CdTe, and PbS) were calculated using the eh-mcCC method. The calculated exciton and biexciton binding energies were found to be in good agreement with previously reported experimental results for quantum dots. The results from these calculations demonstrate that exciton and biexciton binding energies exhibit very different scaling behavior with respect to increasing dot diameter. Specifically, with increasing dot diameter, exciton binding energies were found to decrease following a power-law dependence. By contrast, the biexciton binding energies were found to decrease exponentially and decreased at a slower rate as compared to exciton binding energies. The dramatic difference between the scaling equations for the exciton and biexciton binding energies shows that the response of the biexcitonic system with respect to change in the confinement potential is fundamentally very different from the response shown by excitonic systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700