用户名: 密码: 验证码:
Significantly Enhancing Grain Growth in Cu2ZnSn(S,Se)4 Absorber Layers by Insetting Sb2S3, CuSbS2, and NaSb5S8 Thin Films
详细信息    查看全文
文摘
The Cu2ZnSn(S,Se)4 (CZTSSe) has gained extensive attention in thin film solar cells due to their potential as a nontoxic, low-cost, and earth-abundant absorber material, and a rapid increase in power conversion efficiencies has been demonstrated in laboratory. Compared with the most successful hydrazine-based solution process, the nanocrystal-based ink method and non-hydrazine molecular precursor solution approach are more eco-friendly for fabricating high-efficiency CZTSSe solar cells. However, it is hard to obtain a complete large-grain CZTSSe absorber thin film which can facilitate the transport of photogenerated carriers while minimize grain boundary recombination. Here, we present a simple and effective strategy to significantly enhance grain growth of CZTSSe absorber layers by insetting Sb2S3, CuSbS2, and NaSb5S8 thin films. The incorporation of Sb-based thin films can induce grain growth in the selenization process, and did not produce the impurity phase confirmed by XRD patterns and Raman spectra. It was found that the order of the crystal growth promotion ability is Sb2S3 > CuSbS2 > NaSb5S8 under the same experimental conditions. The presented approach can be extended to other solution processes of fabricating CZTSSe solar cells to enhance their microstructural properties, which are critical for applications in CZTSSe absorbers with fine-grain layers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700