用户名: 密码: 验证码:
Free-Energy-Gap Law for Ultrafast Charge Recombination of Ion Pairs Formed by Intramolecular Photoinduced Electron Transfer
详细信息    查看全文
文摘
In this article, regularities of ultrafast charge recombination (CR) kinetics in photoinduced intramolecular electron transfer in polar solvents are studied. The kinetics of charge separation and ensuing ultrafast CR are simulated within the framework of the multichannel stochastic model. This model accounts for the reorganization of both the solvent and a number of intramolecular high-frequency vibrational modes. The solvent relaxation is described in terms of two relaxation modes. For ultrafast CR, the free-energy-gap law strongly depends on the parameters: the electronic coupling, reorganization energy of intramolecular high-frequency vibrational modes, and the vibrational and solvent relaxation times. The semilog dependence of the CR rate constant on the free-energy gap varies from a parabolic shape to a nearly linear one with increasing the electronic coupling and decreasing the vibrational relaxation time. The dynamic solvent effect in CR is predicted to be large in the area of strong exergonicity and small in the area of weak exergonicity. This regularity is opposite to that observed for the thermal reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700