用户名: 密码: 验证码:
Responsive PET Nano/Microfibers via Surface-Initiated Polymerization
详细信息    查看全文
文摘
Poly(ethylene terephthalate) (PET) is one of the most important thermoplastics in ubiquitous use today because of its mechanical properties, clarity, solvent resistance, and recyclability. In this work, we functionalize the surface of electrospun PET microfibers by growing poly(N-isopropylacrylamide) (PNIPAAm) brushes through a chemical sequence that avoids PET degradation to generate thermoresponsive microfibers that remain mechanically robust. Amidation of deposited 3-aminopropyltriethoxysilane, followed by hydrolysis, yields silanol groups that permit surface attachment of initiator molecules, which can be used to grow PNIPAAm via 鈥済rafting from鈥?atom-transfer radical polymerization. Spectroscopic analyses performed after each step confirm the expected reaction and the ultimate growth of PNIPAAm brushes. Water contact-angle measurements conducted at temperatures below and above the lower critical solution temperature of PNIPAAm, coupled with adsorption of Au nanoparticles from aqueous suspension, demonstrate that the brushes retain their reversible thermoresponsive nature, thereby making PNIPAAm-functionalized PET microfibers suitable for filtration media, tissue scaffolds, delivery vehicles, and sensors requiring robust microfibers.

Keywords:

electrospinning; polymer brush; poly(ethylene terephthalate); responsive polymer; surface functionalization

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700